Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phú Mỹ – BR VT

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Phú Mỹ, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024.

Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phú Mỹ – BR VT:
+ Cho hàm số bậc nhất y mx m 1 (với m là tham số thực, m ≠ 0 và m ≠ 1) có đồ thị là đường thẳng (d). Tìm giá trị m để đường thẳng (d) tạo với 2 trục tọa độ Ox Oy một tam giác có diện tích bằng 2.
+ Cho nửa đường tròn tâm (O) đường kính AB R 2 và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bờ là AB). Trên đoạn OB lấy điểm H, đường thẳng vuông góc với AB tại H cắt nửa đường tròn tại C, tia BC cắt Ax tại D. Gọi M là trung điểm của AD. a) Chứng minh MC là tiếp tuyến của nửa đường tròn. b) Xác định vị trí của điểm H trên đoạn OB để diện tích tam giác OHC lớn nhất.
+ Cho đường tròn (O R), dây AB cố định AB R 2 và điểm P di động trên dây AB (P AB). Gọi (C R 1) là đường tròn đi qua P và tiếp xúc với đường tròn (O R) tại A (D R2) là đường tròn đi qua P và tiếp xúc với đường tròn (O R) tại B. Hai đường tròn (C R 1) và (D R2) cắt nhau tại điểm thứ hai là M. a) Trong trường hợp P không trùng với trung điểm dây AB. Chứng minh tứ giác OMCD là hình thang cân. b) Chứng minh khi P di động trên dây AB thì M di động trên đường thẳng cố định và đường thẳng MP luôn đi qua một điểm cố định N.

File WORD (dành cho quý thầy, cô): TẢI XUỐNG

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: [email protected]