Đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Ngãi


THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Ngãi; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 04 tháng 06 năm 2021.

Trích dẫn đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Ngãi:
+ Cho đường tròn tâm O, bán kính R = 4cm và hai điểm B, C cố định trên (O), BC không là đường kính. Điểm A thay đổi trên (O) sao cho tam giác ABC nhọn. Gọi D, E, F lần lượt là chân các đường cao kẻ từ A, B, C của tam giác ABC.
a) Chứng minh 𝐵𝐴𝐷 = 𝐶𝐴𝑂.
b) Gọi M là điểm đối xứng của A qua BC, N là điểm đối xứng của B qua AC. Chứng minh rằng: CD.CN = CE.CM.
c) Trong trường hợp ba điểm C, M, N thẳng hàng, tính độ dài đoạn thẳng AB.
d) Gọi I là trung điểm của BC. Đường thẳng AI cắt EF tại K. Gọi H là hình chiếu vuông góc của K trên BC. CHứng minh rằng đường thẳng AH luôn đi qua một điểm cố định khi A thay đổi.
+ Cho tập hợp S gồm n số nguyên dương đôi một khác nhau (n >= 3) thỏa mãn tính chất: tổng của 3 phần tử bất kì trong S đều là số nguyên tố. Tìm giá trị lớn nhất có thể của n.
+ Cho hàm số y m x 2 2 (m là tham số) có đồ thị là đường thẳng (d).
a) Tìm điều kiện của m để hàm số đồng biến trên ℝ.
b) Tìm giá trị của m để khoảng cách từ gốc tọa độ O đến (d) bằng 1.

File WORD (dành cho quý thầy, cô): TẢI XUỐNG




Ghi chú: Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho TOANMATH.com, vui lòng gửi về:
Fanpage: TOÁN MATH
Email: [email protected]