Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bình Dương

Ngày 30 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đạt tiêu chí đề ra vào các trường THPT trên địa bàn tỉnh Bình Dương, để chuẩn bị cho năm học mới.

Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bình Dương gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài 120 phút, đề thi có lời giải chi tiết.

Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bình Dương:
+ Một tổ công nhân theo kế hoạch phải làm 140 sản phẩm trong một thời gian nhất định. Nhưng khi thực hiện năng suất của tổ đã vượt năng suất dự định là 4 sản phẩm mỗi ngày. Do đó tổ đã hoàn thành công việc sớm hơn dự định 4 ngày. Hỏi thực tế mỗi ngày tổ đã làm được bao nhiêu sản phẩm?
[ads]
+ Cho đường tròn (O; R). Từ một điểm M nằm ngoài đường tròn (O; R) sao cho OM = 2R, vẽ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Lấy một điểm N tùy ý trên cung nhỏ AB. Gọi I, H, K lần lượt là hình chiếu vuông góc của N trên AB, AM, BM.
1) Tính diện tích tứ giác MAOB theo R.
2) Chứng minh: góc NIH = góc NBA.
3) Gọi E là giao điểm của AN và IH, F là giao điểm của BN và IK. Chứng minh tứ giác IENF nội tiếp được trong một đường tròn.
4) Giả sử O, N, M thẳng hàng. Chứng minh: NA^2 + NB^2 = 2R^2.
+ Cho phương trình x^2 + ax + b + 2 = 0 (a, b là tham số). Tìm tất cả các giá trị của a, b để phương trình trên có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện: x1 – x2 = 4 và x1^3 – x2^3 = 28.

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com