Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Hiệp Hòa – Bắc Giang

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hiệp Hòa, tỉnh Bắc Giang; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 03 năm 2023.

Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Hiệp Hòa – Bắc Giang:
+ Cho đa thức f(x) = x3 − 3×2 + 3x − 4. Với giá trị nguyên nào của x thì giá trị của đa thức f(x) chia hết cho giá trị của đa thức x2 + 2.
+ Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh AB2 = 4.AC.BD. b) Kẻ OM vuông góc CD tại M. Chứng minh AC = CM. c) Từ M kẻ MH vuông góc AB tại H. Chứng minh: BC đi qua trung điểm MH.
+ Cho ABC có đường cao kẻ từ A, đường trung tuyến xuất phát từ B và đường phân giác kẻ từ đỉnh C đồng quy. Gọi a, b, c lần lượt là độ dài ba cạnh BC; AC; AB. Chứng minh (a + b)(a² + b² – c²) = 2a²b.

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com