Đề thi học sinh giỏi Toán 8 năm 2024 phòng GD&ĐT Yên Định – Thanh Hóa

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 và chọn đội tuyển vòng 1 dự thi học sinh giỏi Toán 9 cấp tỉnh năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Yên Định, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm.

Trích dẫn Đề thi học sinh giỏi Toán 8 năm 2024 phòng GD&ĐT Yên Định – Thanh Hóa:
+ Tìm tất cả các số nguyên tố p có dạng 2 2 2 p a b c trong đó a, b, c là các số nguyên dương thỏa mãn 4 4 4 abc chia hết cho p.
+ Cho hình vuông ABCD có cạnh là a. Điểm E thuộc cạnh BC, F là giao điểm của AE và DC, G là giao điểm của DE và BF. Trên tia đối của tia DC lấy điểm M sao cho BE = DM. Gọi T là trung điểm của EM. 1. Chứng minh tam giác AEM vuông cân và ba điểm B, T, D thẳng hàng. 2. Gọi I, K theo thứ tự là giao điểm của AB với CG và DG. Chứng minh IE song song với BD. 3. Tìm vị trí điểm E trên cạnh BC để tổng BK + CF đạt GTNN.
+ Cho hai số thực dương x, y thoả mãn: x + y + xy = 3. Tìm giá trị nhỏ nhất của biểu thức P.

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com