Đề thi Olympic Toán 8 năm 2024 – 2025 phòng GD&ĐT Thanh Oai – Hà Nội

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội. Kỳ thi được diễn ra vào ngày 08 tháng 04 năm 2025. Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Trích dẫn Đề thi Olympic Toán 8 năm 2024 – 2025 phòng GD&ĐT Thanh Oai – Hà Nội:
+ Viết ngẫu nhiên một số tự nhiên có hai chữ số không vượt quá 50. Tính xác suất của biến cố A: “Số tự nhiên được viết ra là số chính phương”.
+ Cho tam giác ABC vuông tại A có AB < AC, đường cao AH (H thuộc BC). Trên tia đối của tia BA lấy D sao cho AB = BD. Kéo dài AH cắt CD tại I. Kẻ đường thẳng vuông góc với CD tại I, đường thẳng này cắt AD tại K. a) Chứng minh AB2 = BH.BC và BD/BH = BC/BD. b) Chứng minh △HDB đồng dạng với △DBC và tam giác KHD vuông. c) Gọi E là điểm đối xứng với A qua H. Kẻ đường thẳng từ K song song với AC, cắt DE tại N. Chứng minh: KA.KD = KH.KC và CN vuông góc với CD.

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com